There’s already been some work on direct neural network creation to bypass the whole virtualization issue. Some people are working on basically an analog FPGA style silicon based neural network component you can just put in a SOM and integrate into existing PCB electronics. Rather than being traditional logic gates they directly implement the neural network functions in analog, making them much faster and more efficient. I forget what the technology is called but things like that seem like the future to me.
I’m very much aware of FPGA-style attempts, however I do feel the need to point out that FPGAs (and FPGA style computing) is even more hardware-strained than emulation.
For example, current mainstream emulation FPGA DE10 Nano has up to 110k LE/LUT, and that gets you just barely passable PS1 emulation (primarily, it’s great for GBA emu, and mid to late 80s, early 90s game console hardware emulation). In fact it’s not even as performant as GBA emulation on ARM - it uses more power, costs more, and the only benefit is true to OG hardware execution (which isn’t always true for emulation).
Simply said, while FPGAs provide versatility, they’re also much less performant than similarly priced SoCs with emulation of the specific architecture.
There’s already been some work on direct neural network creation to bypass the whole virtualization issue. Some people are working on basically an analog FPGA style silicon based neural network component you can just put in a SOM and integrate into existing PCB electronics. Rather than being traditional logic gates they directly implement the neural network functions in analog, making them much faster and more efficient. I forget what the technology is called but things like that seem like the future to me.
I’m very much aware of FPGA-style attempts, however I do feel the need to point out that FPGAs (and FPGA style computing) is even more hardware-strained than emulation.
For example, current mainstream emulation FPGA DE10 Nano has up to 110k LE/LUT, and that gets you just barely passable PS1 emulation (primarily, it’s great for GBA emu, and mid to late 80s, early 90s game console hardware emulation). In fact it’s not even as performant as GBA emulation on ARM - it uses more power, costs more, and the only benefit is true to OG hardware execution (which isn’t always true for emulation).
Simply said, while FPGAs provide versatility, they’re also much less performant than similarly priced SoCs with emulation of the specific architecture.
I meant in the context of machine learning not gaming