The paper exposes how brittle current alignment techniques really are when you shift the input distribution slightly. The core idea is that reformatting a harmful request as a poem using metaphors and rhythm can bypass safety filters optimized for standard prose. It is a single-turn attack, so the authors did not need long conversation histories or complex setups to trick the models.

They tested this by manually writing 20 adversarial poems where the harmful intent was disguised in flowery language, and they also used a meta-prompt on DeepSeek to automatically convert 1,200 standard harmful prompts from the MLCommons benchmark into verse. The theory is that the poetic structure acts as a distraction where the model focuses on the complex syntax and metaphors, effectively disrupting the pattern-matching heuristics that usually flag harmful content.

The performance gap they found is massive. While standard prose prompts had an average Attack Success Rate of about 8%, converting those same prompts to poetry jumped the success rate to around 43% across all providers. The hand-crafted set was even more effective with an average success rate of 62%. Some providers handled this much worse than others, as Google’s gemini-2.5-pro failed to refuse a single prompt from the curated set for a 100% success rate, while DeepSeek models were right behind it at roughly 95%. On the other hand, OpenAI and Anthropic were generally more resilient, with GPT-5-Nano scoring a 0% attack success rate.

This leads to probably the most interesting finding regarding what the authors call the scale paradox. Smaller models were actually safer than the flagship models in many cases. For instance, claude-haiku was more robust than claude-opus. The authors hypothesize that smaller models might lack the capacity to fully parse the metaphors or the stylistic obfuscation, meaning the model might be too limited to understand the hidden request in the poem and therefore defaults to a refusal or simply fails to trigger the harmful output. It basically suggests safety training is heavily overfitted to prose, so if you ask for a bomb recipe in iambic pentameter, the model is too busy being a poet to remember its safety constraints.